a2 United States Patent

Lee et al.

US009201787B2

(10) Patent No.: US 9,201,787 B2
(45) Date of Patent: Dec. 1, 2015

(54) STORAGE DEVICE FILE SYSTEM AND
BLOCK ALLOCATION

(71) Applicant: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-Si, Gyeonggi-Do (KR)

(72) Inventors: Chul Lee, Hwaseong-Si (KR);
Jae-Geuk Kim, Hwaseong-Si (KR);
Chang-Man Lee, Seoul (KR);
Joo-Young Hwang, Suwon-Si (KR)

(73) Assignee: Samsung Electronics Co., Ltd.,
Suwon-si, Gyeonggi-do (KR)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 78 days.

(21) Appl. No.: 14/039,042
(22) Filed: Sep. 27, 2013

(65) Prior Publication Data
US 2014/0095772 Al Apr. 3,2014

(30) Foreign Application Priority Data
Sep. 28,2012 (KR) ccoeevercrrecnnenee 10-2012-0109193
(51) Imt.ClL
GO6F 12/02 (2006.01)
GO6F 3/06 (2006.01)
(52) US.CL
CPC GO6F 12/0246 (2013.01); GOGF 3/061

(2013.01); GOGF 3/0643 (2013.01); GO6F
3/0679 (2013.01); GOGF 2212/2022 (2013.01);
GO6F 2212/7202 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,016,553 A * 1/2000 Schneideretal. 714/21

6,182,088 Bl 1/2001 Kawakami et al.

6,678,785 B2* 1/2004 Lassercccocovrrnnn. 711/103

7,899,989 B2 3/2011 Moore et al.

7,934,074 B2* 4/2011 Leeetal. ..ccocecevrrnrnnnn. 711/217

8,176,103 B2 5/2012 Seo et al.

9,009,433 B2* 4/2015 RYU .cocoirvieincinicncnn 711/165
2002/0032835 Al* 3/2002 Lietal. .. . 711/114
2003/0065876 Al™* 4/2003 LasSerccccovevrernrnn 711/103

(Continued)

FOREIGN PATENT DOCUMENTS

JP 05-020142 1/1993

JP 11-143764 5/1999

JP 2000-148550 5/2000

JP 2001-282588 10/2001

KR 100818993 4/2008

KR 1020120134917 12/2012
OTHER PUBLICATIONS

‘Log-structured file systems: There’s one in every SSD’ by Valerie
Aurora, Sep. 18, 2009.*

(Continued)

Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — Volentine & Whitt, PLLC

(57) ABSTRACT

A computing system a storage device and a file system. The
storage device includes a storage area having flash memory.
The file system is configured to divide the storage area into
multiple zones, multiple sections and multiple blocks, and to
write a log in each block. The file system includes a block
allocation module. The block allocation module is configured
to allocate a target block, in which a log is to be written, by a
continuous block allocation method according to which a
block having a continuous address with a most recently
selected block is set as the target block. The block allocation
module is further configured to find a free section from the
multiple sections when it is not possible to allocate the target
block by the continuous block allocation method, and to set a
block in the found free section as the target block.

15 Claims, 10 Drawing Sheets

ZONE 1 i ZONE .
JSECTION T, SECTION? ' SEGTION3 . SECTION4 20
BLK 1 "
BLK 2
BLK 3 o
BLK 4

USED BLK

US 9,201,787 B2
Page 2

(56)

2007/0016721
2009/0157948
2009/0177857
2010/0100667
2010/0169544
2010/0312959
2011/0022801
2011/0258391
2012/0124294
2012/0311241
2013/0117520
2013/0166828

References Cited

U.S. PATENT DOCUMENTS

Al* 12007 Gay ...

Al* 6/2009 Trichina et al. .

Al* 7/2009 Butterworth et al. ..

Al* 4/2010 Kangetal.
Al* 7/2010 Eomet al.
Al* 12/2010 Petit et al.
Al* 12011 Flynn ...
Al* 10/2011 Atkisson et al.
Al* 5/2012 Atkisson et al.
Al* 12/2012 Lee .ovveena.
Al* 5/2013 Ryu ..
Al* 6/2013 Chun .

OTHER PUBLICATIONS

‘An Implementation of a Log-Structured File System for UNIX’ by
Margo Seltzer et al., 1993 Winter USENIX—1Jan. 25-29, 1993.*
711/103 ‘Samsung creates flash-friendly, open source file system: F2FS’ by

....... 711/103

711/162 Rick Burgess, Oct. 8, 2012.*
.. 711/103 ‘An f2fs teardown’ by Neil Brown, Oct. 10, 2012.*

. 711/103 “The Design and Implementation of a Log-Structured File System’ by

;} i;}% Mendel Rosenblum and John K. Ousterhout, copyright 1992, ACM.*

711/118 ‘Flash-Friendly File System (F2FS)’ by Jaegeuk Kim, presented at

T11/135 KLF 2012, Oct. 12, 2012.*

. 7117103
e T11/165 . .
. 711/103 * cited by examiner

U.S. Patent

Dec. 1, 2015 Sheet 1 of 10

FIG. 1

STORAGE
HOST ™ DRVICE

10 20

US 9,201,787 B2

U.S. Patent Dec. 1, 2015 Sheet 2 of 10 US 9,201,787 B2

FIG. 2
™.
USER
USER APPLICATION - 12 S?ﬁg&
)
VIRTUAL FILESYSTEM 114
FILE SYSTEM -— 16
KERNEL
SPACE
BLOCK ALLOCATION || 47 (13)
MODULE
DEVICE -
DRIVER 18

U.S. Patent Dec. 1, 2015 Sheet 3 of 10 US 9,201,787 B2

FIG. 3

BLK(51)

T
SEG(8Y} 55
i

SECTION

U.S. Patent

Dec. 1, 2015 Sheet 4 of 10 US 9,201,787 B2

FIG. 4

INGDE
METADATA

N
o 813
.
N
\

23
3
o

X

MAX 3TB

FIG. 5

¥

b5 R a

U.S. Patent Dec. 1, 2015 Sheet 5 of 10 US 9,201,787 B2

FIG. 6
| PHYSICAL
NODEID | sopRESS
NG 3
N1 b
N2 I
FIG. 7
. Z0NE 1 . ZONE 2 _
 SECTIONT | SECTION?2 | SECTION3 | SECTION4 20
il il Bl hailt Bl bl o
BLK 1 & S -
BLK 2)
BLK 3
BLK 4 o3
b »

U.S. Patent Dec. 1, 2015 Sheet 6 of 10 US 9,201,787 B2

FIG. 8
ZONE 1 . ZONE 2
CSECTIONT . SECTION? | SECTIONS , SECTIONG 50
i ot ol el b b —
BLK 1
BLK 2 ‘
BLK 3
BLK 4
> = -
USED BLK
FIG. 9

START

IS BLOCK N
IN X+1 FREE INZONE__—> - |

27 5120 i
s11o\,v/ FIND FREE SECTION WHOSE

SET BLOCK IN X+1 BLOCKS ARE ALL FREE
AS NEXT TARGET BLOCK

IS FOUND N

FREE SECTION IN ZONE ! $150
?
2/ SET ZONE INCLUDING

Y FOUND FREE SECTION AS Zn

OTHER LOGS
WRITER IN Zn ?

$140 :

SET FIRST BLOCK IN FREE
SECTION AS NEXT TARGET
BLOCK

OF TIMES
> THRESHOLD ?

A

{ END)

U.S. Patent

Dec. 1, 2015

FIG.

10

Sheet 7 of 10

US 9,201,787 B2

~ I L i >
61~ super block 0
62— super block 1
CP SiT NAT SSA 50 S 52 Sn
[! [[
63 64 65 66
FIG. 11
~alk: i Neo .
&1
B
o Sy NAT Se St 82 53 . 5n
'S80 LSS BS2T G ass
] 1 i
&3 &4 85
op SiT NAT S0 51 §2 $3 . St
H f H
J i H f i
] 84 85/ y
{ i
- 0088
BEpatcy
- 00R2
0083
BLKm | i~00Bm

U.S. Patent Dec. 1, 2015 Sheet 8 of 10 US 9,201,787 B2

FIG. 13

HOST a0

FLE SYSTEM —1 316

et N N

/" 320

NETWORK }"‘x

\w\ P —
f///f o \\\\\\ L DBSERVER“]
s S
D — —:: U “; I ——
(DB SERVER j | DB SERVER ba SERVER |
I I T

330 340 150

U.S. Patent

Dec. 1, 2015 Sheet 9 of 10
FIG. 14
1000
1200 1100
J J
{ i
o NONVOLATILE
HOST == GONTROLLER j—=1 pociinovnruane
FIG. 15
2000
2200 2100
¢ {
CCHT | | NONVOLATILE [T
- T MEMORY CHIP
JCH2 |1 NONVOLATILE |
MEMORY CHIP
HOST == CONTROLLER T

.
™
&

CHIC| | NONVOLATILE

MEMORY CHIP

1
P

US 9,201,787 B2

U.S. Patent Dec. 1, 2015 Sheet 10 of 10 US 9,201,787 B2

FIG. 16
3000
2000 _
3100 3500 2200 y 2100
e i I
3 X 7 ‘ i
GPU - oHt | NONVOLATIE [
T MEMORY CHP 1 s
3200 <+ | CONTROLLER § .
RAM e _CHc | NONVOLATHE [
~7771 MEMORY CHIP 1 |
3300
SR L. L] Powm
INTERFAGE SUPPLY
\',v}' k

3
3400

US 9,201,787 B2

1
STORAGE DEVICE FILE SYSTEM AND
BLOCK ALLOCATION

CROSS-REFERENCE TO RELATED
APPLICATION

A claim for priority under 35 U.S.C. §119 is made to
Korean Patent Application No. 10-2012-0109193, filed on
Sep. 28, 2012, in the Korean Intellectual Property Office, the
entire contents of which are hereby incorporated by refer-
ence.

BACKGROUND

The present inventive concept relates to a computing sys-
tem and a method for managing data in the computing system.

When a file system stores a file in a storage device, the file
is stored in the storage device as file data and metadata. The
file data contains content of the file to be stored by a user
application, and the metadata contains file attributes, a block
location at which the file data is stored, and so on.

Meanwhile, when a file system stores a file from a storage
device, it is necessary to first allocate a storage area of the file
to be stored. Here, if the storage area of the to-be-stored file is
allocated in consideration of storage device characteristics,
read and write performance of system can be enhanced.

SUMMARY

Various embodiments provide a computing system having
enhanced read and write performance, as well as a method for
managing data in a computing system having enhanced read
and write performance. The embodiments will be described
in or be apparent from the following description.

According to an aspect of the inventive concept, there is
provided a computing system including a storage device and
a file system. The storage device includes a storage area
having flash memory. The file system is configured to divide
the storage area into multiple zones, multiple sections and
multiple blocks, and to write a log in each block. The file
system includes a block allocation module. The block allo-
cation module is configured to allocate a target block, in
which a log is to be written, by a continuous block allocation
method according to which a block having a continuous
address with a most recently selected block is set as the target
block. The block allocation module is further configured to
find a free section from the multiple sections when it is not
possible to allocate the target block by the continuous block
allocation method, and to set a block in the found free section
as the target block.

According to another aspect of the inventive concept, there
is provided a method for managing data in a computing sys-
tem. The method includes dividing a storage area of a storage
device into multiple blocks, multiple sections and multiple
zones; setting a first block of the multiple blocks in a first
section of the multiple sections as a first target block in which
first data is to be written, the first section being in a first zone
of the multiple zones; and determining whether a second
block having an address continuous to the first block is a free
block. When the second block is determined to be a free
block, the second block is set as a second target block in
which second data is to be written after the first data is written
in the first target block. When the second block is determined
not to be a free block, setting a third block in a second section
of the multiple sections different from the first section as the
second target block in which the second data is to be written
after the first data is written in the first target block.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to another aspect of the inventive concept, there
is provided a computing system including a storage device
having a storage area, and a host configured to control writing
of data in the storage device. The host includes a file system
configured to divide the storage area into multiple zones, each
zone including multiple sections, and each section including
multiple blocks. The file system includes a block allocation
module configured to allocate target blocks in which data are
to be written by setting as a target block a free block having a
continuous address with a previous target block, in which
previous data is written, in the same section as the previous
target block. When there is no free block having a continuous
address with the previous target block, the target block is set
as a free block in a different section of the multiple sections in
the same zone as the previous target block. When the different
section in the same zone as the previous target block is not
available, the target block is set as a free block in another
different section of the multiple sections in another zone than
the zone of the previous target block.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the inventive concept will be
more clearly understood from the following detailed descrip-
tion taken in conjunction with the accompanying drawings in
which:

FIG. 1is ablock diagram of a computing system, according
to an embodiment of the inventive concept;

FIG. 2 is a block diagram of a host shown in FIG. 1,
according to an exemplary embodiment of the inventive con-
cept;

FIG. 3 is a block diagram of a storage device shown in FI1G.
1, according to an embodiment of the inventive concept;

FIG. 4 illustrates a structure of a file stored in the storage
device shown in FIG. 1, according to an embodiment of the
inventive concept;

FIG. 5 is a block diagram for explaining the storage device
shown in FIG. 1, according to an embodiment of the inventive
concept;

FIG. 6 illustrates a node address table, according to an
embodiment of the inventive concept;

FIG. 7 illustrates a block allocation method by which read
and write performance of a flash memory based storage
device can be enhanced, according to an embodiment of the
inventive concept;

FIG. 8 illustrates an alternative block allocation method by
which read and write performance of a flash memory based
storage device;

FIG. 9 is a flowchart for explaining a data management
method of a computing system, according to an embodiment
of the inventive concept;

FIGS. 10 to 12 are block diagrams for explaining examples
of configuring the storage device shown in FIG. 5, according
to embodiments of the inventive concept;

FIG. 13 is a block diagram for explaining a specific
example of a computing system, according to embodiments
of the inventive concept; and

FIGS. 14 to 16 are block diagrams for explaining a specific
example of a computing system, according to embodiments
of the inventive concept.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

The inventive concept will now be described more fully
with reference to the accompanying drawings, in which
exemplary embodiments of the inventive concept are shown.

US 9,201,787 B2

3

The inventive concept may, however, be embodied in many
different forms and should not be construed as being limited
to the embodiments set forth herein; rather, these embodi-
ments are provided so that this disclosure will be thorough
and complete, and will fully convey the concept of the inven-
tive concept to one of ordinary skill in the art. It should be
understood, however, that there is no intent to limit exemplary
embodiments of the inventive concept to the particular forms
disclosed, but conversely, exemplary embodiments of the
inventive concept are to cover all modifications, equivalents,
and alternatives falling within the spirit and scope of the
inventive concept. In the drawings, like reference numerals
denote like elements throughout, and the sizes or thicknesses
of elements and layers may be exaggerated for clarity of
explanation.

It will be understood that when an element or layer is
referred to as being “on” or “connected to” another element or
layer, it can be directly on or connected to the other element
or layer or intervening elements or layers may be present. In
contrast, when an element is referred to as being “directly on”
or “directly connected to” another element or layer, there are
no intervening elements or layers present. As used herein, the
term “and/or” includes any and all combinations of one or
more of the associated listed items.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the inventive concept
(especially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by context.
The terms “comprising,” “having,” “including,” and “con-
taining” are to be construed as open-ended terms (i.e., mean-
ing “including, but not limited to,”) unless otherwise noted.
The term “exemplary” indicates an illustration or example.

It will be understood that, although the terms first, second,
etc., may be used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another ele-
ment. Thus, for example, a first element, a first component or
a first section discussed below could be termed a second
element, a second component or a second section without
departing from the present teachings.

Unless defined otherwise, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the relevant art belongs. It is noted
that the use of any and all examples, or exemplary terms
provided herein is intended merely to better illuminate the
inventive concept and is not a limitation on scope unless
otherwise specified. Further, unless defined otherwise, all
terms defined in generally used dictionaries may notbe overly
interpreted.

Hereinafter, a computing system according to an exem-
plary embodiment of the inventive concept will now be
described with reference to FIGS. 1 to 6. FIG. 1 is a block
diagram of a computing system, according to an exemplary
embodiment. FIG. 2 is a block diagram of a host shown in
FIG. 1, according to an exemplary embodiment. FIG. 3 is a
block diagram of a storage device shown in FIG. 1, according
to an exemplary embodiment. FIG. 4 illustrates a structure of
a file stored in the storage device shown in FIG. 1, according
to an exemplary embodiment. FIG. 5 is a block diagram for
explaining the storage device shown in FIG. 1, according to
an exemplary embodiment. FIG. 6 illustrates a node address
table, according to an exemplary embodiment.

First, referring to FIG. 1, a computing system 1 includes a
host 10 and a storage device 20. The host 10 and the storage
device 20 are configured to communicate with each other. For
example, the host 10 and the storage device 20 may commu-

10

15

20

25

30

35

40

45

50

55

60

65

4

nicate with each other via one of various protocols, such as a
Universal Serial Bus (USB) protocol, a Multimedia Card
(MMC) protocol, a Peripheral Component Interconnection
(PCI) protocol, a PCI-Express (PCI-E) protocol, an
Advanced Technology Attachment (ATA) protocol, a Serial
ATA (SATA) protocol, a Small Computer Small Interface
(SCSI) protocol, an Enhanced Small Disk Interface (ESDI)
protocol, and an Integrated Drive Electronics (IDE) protocol,
but are not limited thereto. The host 10 controls the storage
device 20. For example, the host 10 may write data in the
storage device 20 and/or may read data from the storage
device 20.

Referring to FIG. 2, the host 10 includes a user space 11
and a kernel space 13. Various components shown in FIG. 2
may refer to software and/or hardware, such as a field-pro-
grammable gate array (FPGA) or application-specific inte-
grated circuit (ASIC), for example. However, the components
are not limited to software or hardware, and may be config-
ured to reside in an addressable storage medium or to execute
one or more processors. Also, functions provided by the com-
ponents may be implemented by further divided components
or may be implemented by a single component performing a
particular function using a plurality of subcomponents.

The user space 11 includes an area in which a user appli-
cation 12 is executed. The kernel space 13 is a restrictively
reserved area for executing a kernel. In order to access the
kernel space 13 from the user space 11, a system call may be
used.

Inthe depicted embodiment, the kernel space 13 includes a
virtual file system 14, a file system 16, and a device driver 18.
Here, the file system 16 may be implemented using one or
more file systems. In various embodiments, the file system 16
may include a flash-friendly file system (F2FS), for example,
described below.

In some embodiments, the file system 16 divides a storage
area of the storage device 20 into a plurality of blocks, sec-
tions and zones. The file system 16 writes logs received from
the user application 12 in respective blocks, as described
below in more detail.

As shown, the file system 16 includes a block allocation
module 17. In various embodiments, the block allocation
module 17 allocates a target block, in which a log is to be
written, by a continuous block allocation method according to
which a block having a continuous address with a most
recently selected block, is set as the target block. When it is
not possible to allocate a target block using the continuous
block allocation method, a free section is found from the
plurality of sections, and the target block is set to a free block
in the found free section. The free block selected as the target
block may be the first available free block in the found free
section based on corresponding block addresses. A free sec-
tion may be a section in which all blocks are free blocks. A
free section found in the same zone as the most recent selected
block is selected over a free section found in a different zone
from the zone of the most recently selected block. Operations
of the block allocation module 17 are described below in
more detail with reference to FIG. 9.

The virtual file system 14 allows one or more file systems
16 to operate with respect to each other. For example, in order
to perform read/write operations on different file systems 16
of different media, the virtual file system 14 may use stan-
dardized system call. Therefore, a system call, for example,
open() read() or write(), can be used irrespective of the types
of'file systems 16. In other words, the virtual file system 14 is
an abstraction layer existing between the user space 11 and
the file system 16.

US 9,201,787 B2

5

The device driver 18 is responsible for interfacing between
hardware and the user application (or operating system). For
example, the device driver 18 may be a program necessary for
normal operation of the hardware under a given operating
system.

Hereinafter, the operation the file system 16 is described,
assuming that file system 16 includes an F2FS, for purposes
ofillustration. The F2FS therefore controls the storage device
20, although the file system 16 is not limited as illustrated
herein, and the types of file system 16 may vary, as would be
apparent to one of ordinary skill in the art.

The storage device 20 may include, but is not limited to,
various kinds of card storages, such as a solid state disk/drive
(SSD), a hard disk drive (HDD) or eMMC, data servers, and
SO O1.

The storage device 20 may be configured as shown in FIG.
3, for example. A segment (SEG) 53 includes a plurality of
blocks (BLK) 51, a section (SECTION) 55 includes a plural-
ity of segments 53 (and thus the corresponding pluralities of
blocks), and a zone (ZONE) 57 includes a plurality of sec-
tions 55. For example, the block 51 may have a size of 4
Kbytes, and the segment 53 may include 512 blocks 51, so
that each segment 53 has a size of 2 Mbytes. The configura-
tion may be determined when the storage device 20 is format-
ted, although the various embodiments are not limited
thereto. Sizes of the section 55 and the zone 57 may be
modified. In the F2FS file system, for example, all data may
be read/written in 4 Kbyte page units. That is, one-page of
data is stored in the block 51, and multiple-page data is stored
in the segment 53.

The file stored in the storage device 20 may have a refer-
encing structure, as shown in FIG. 4, for example. One file
may have file data containing content of a file to be stored by
a user application (e.g., user application 12 in FIG. 2), and
metadata containing file attributes, a block location at which
the file data is stored, and so on. Here, data blocks 70 are
spaces for storing file data, and node blocks 80, 81 to 88 and
91 to 95 are spaces for storing metadata. Node block 80 may
be an inode block, node blocks 81 to 88 may be direct node
blocks, and node blocks 91 to 95 may be indirect node blocks.

The direct node blocks 81 to 88 include data pointers
pointing to respective data blocks 70. The indirect node
blocks 91 to 95 include pointers pointing to node blocks 83 to
88 (that is, lower node blocks), other than the data blocks 70.
The indirect node blocks 91 to 95 may include first indirect
node blocks (e.g., first indirect node blocks 91 to 94) and
second indirect node blocks (e.g., second indirect node block
95). In the depicted example, the first indirect node blocks 91
to 94 include first node pointers pointing to the direct node
blocks 83 to 88, and the second indirect node block 95
includes second node pointers pointing to the first indirect
node blocks 93 and 94.

The inode block 80 may include one or more of data point-
ers pointing directly to the data blocks (e.g., data block 70),
first node pointers pointing to direct node blocks (e.g., direct
node blocks 81 and 82), second node pointers pointing to first
indirect node blocks (e.g., first indirect node blocks 91 and
92), and third node pointers pointing second indirect node
blocks (e.g., second indirect node block 95).

Here, a file may have a maximum size, for example, 3
Tbytes (TB). Such a large-capacity file may have the follow-
ing reference format, for example: the inode block 80 may
include 994 data pointers, which point to 994 data blocks 70,
respectively. The number of the first node pointers may be
two, which point to two direct node blocks 81 and 82, respec-
tively. The number of the second node pointers may be two,
which point to two first indirect node blocks 91 and 92,

10

15

20

25

30

35

40

45

50

55

60

65

6

respectively. The number of the third node pointers may be
one, which points to the second indirect node block 95. In
addition, each file has inode pages including inode metadata.

Meanwhile, as shown in FIG. 5, in the computing system 1
according to an exemplary embodiment, the storage device 20
is divided into a first area I and a second area I1. For example,
the storage device 20 may be divided into the first area [and
the second area II when formatting the file system 16,
although the various embodiments are not limited thereto.
The first area [is a space in which various kinds of informa-
tion managed by the overall system is stored, including the
number of currently allocated files, the number of valid pages
and position information, for example. The second area Il is a
space in which various kinds of directory information actu-
ally used by users, data, file information, and the like, are
stored. In an embodiment, the first area | may be stored in a
head part of the storage device 20, and the second area Il may
be stored in a tail part of the storage device 20, where the head
part is positioned ahead of the tail part in view of physical
addresses.

In more detail, the first area I may include super blocks 61
and 62, a CheckPoint area (CP) 63, a segment information
table (SIT) 64, a node address table (NAT) 65, and a segment
summary area (SSA) 66. Default information of the file sys-
tem 16 is stored in the super blocks 61 and 62. For example,
information such as sizes of blocks 51, the number of blocks
51, and state flags of the file system 16 (e.g., clean, stable,
active, logging, unknown, etc.) may be stored in the super
blocks 61 and 62. As shown, the number of super blocks 61
and 62 may be two. Also, the same content may be stored in
each of the super blocks 61 and 62, so even if failure occurs in
one of the super blocks 61 and 62, the other may be used.

A checkpoint is stored in the CheckPoint area (CP) 63. A
checkpoint is a logical interruption point, where states up to
the interruption point are perfectly preserved. If an accident
occurs during operation of the computing system that causes
a shutdown (such as a sudden power off, for example), the file
system 16 may store data using the preserved checkpoint. The
checkpoint may be generated periodically or at the time of the
system shutdown, although the various embodiments are not
limited thereto.

As shown in FIG. 6, for example, the NAT 65 may include
node identifiers NODE IDs corresponding to nodes, and
physical addresses corresponding to the node identifiers
NODE IDs, respectively. For example, a node block corre-
sponding to node identifier NO may correspond to physical
address a, a node block corresponding to node identifier N1
may correspond to physical address b, and a node block
corresponding to node identifier N2 may correspond to physi-
cal address c. All nodes, including inode, direct nodes and
indirect nodes, have intrinsic node identifiers, which may be
allocated from the NAT 65. That is, the NAT 65 may include
node identifiers of inode, direct nodes and indirect nodes.
Various physical addresses corresponding to the respective
node identifiers may be updated.

The SIT 64 includes the number of valid pages of each
segment and a bitmap of multiple pages. The bitmap means 0
or 1, which indicates whether each page is valid or not valid.
The SIT 64 may be used in a cleaning operation (or garbage
collection). In particular, when the cleaning operation is per-
formed, the bitmap may reduce unnecessary read requests. In
addition, the bitmap may be used when blocks are allocated in
adaptive data logging.

The SSA 66 is an area in which summary information of
each segment of the second area II is gathered. In particular,
the SSA 66 describes node information for blocks of each
segment in the second area II. The SSA 66 may be used in the

US 9,201,787 B2

7

cleaning operation (or garbage collection). In particular, in
order to identify locations of data blocks 70 or lower node
blocks (e.g., direct node blocks), the node blocks 80, 81 to 88,
and 91 to 95 include a list or addresses of node identifiers.
Conversely, the SSA 66 provides references by which the data
blocks 70 or lower node blocks 80, 81 to 88 and 91 to 95 can
identify positions of higher node blocks 80, 81 to 88 and 91 to
95. The SSA 66 includes a plurality of segment summary
blocks. One segment summary block contains information
concerning one segment positioned in the second area II. In
addition, the segment summary block is composed of mul-
tiple portions of summary information, and one portion of
summary information corresponds to one data block or one
node block.

The second area II may include data segments DSO and
DS1 separated from each other and node segments NSO and
NS1. Portions of data are stored in the data segments DSO and
DS1, and nodes are stored in the node segments NSO and
NS1. If the data and nodes are separated at diftferent regions,
the segments can be efficiently managed and the data can be
effectively read within a short time when the data is read.

Further, write operations in the second area II are per-
formed using a sequential access method, while write opera-
tions in the first area I are performed using a random access
method. As mentioned above, the second area II may be
stored in a tail part of the storage device 20 and the first area
I may be stored in a head part of the storage device 20, where
the head part is positioned ahead of the tail part in view of
physical addresses.

The storage device 20 may be a solid state disk/drive
(SSD), in which case a buffer may be provided in the SSD.
The buffer may be a single layer cell (SLC) memory, for
example, having fast read/write operation speed. Therefore,
the buffer may speed up the write operation based on the
random access method in a limited space.

In FIG. 5, the first area I is depicted as having the super
blocks 61 and 62, CP 63, SIT 64, NAT 65 and SSA 66
arranged in that order, although the various embodiments are
not limited thereto. For example, the locations of SIT 64 and
NAT 65 may be reversed, and locations of NAT 65 and SSA
66 may also be reversed.

Meanwhile, as described above, when the storage device
20 is a flash memory based storage device, the read and write
performance of computing system 1 may be enhanced when
the block allocation module 17 of the file system 16 allocates
blocks under rules (1) to (4), discussed below.

Rule (1): When the flash memory based storage device 20
writes data, and a block (e.g., block 51 in FIG. 3) is allocated
by a continuous block allocation method for the overall vol-
ume, system performance is highest and lifetime of the stor-
age device 20 is lengthened. Here, continuous block alloca-
tion method means that, when a block (e.g., block 51 in FIG.
3)in which data has recently been written has address (X), the
address of the selected next block in which data is to be
written (defined as a target block) becomes (X+1).

Rule (2): As in rule (1), if continuous block allocation is
performed in a virtual area in which the overall volume is
uniformly divided, an area having performance similar to that
in rule (1) exists even when continuous block allocation is not
performed on the overall volume. The area is a virtual area in
the storage device 20. For example, the area may correspond
to a section (e.g., section 55 in FIG. 3). In some embodiments,
the section (e.g., section 55 in FIG. 3) may be a garbage
collection unit of the storage device 20.

Rule (3): As in rule (2), the overall volume is divided into
multiple sections (e.g., section 55 in FIG. 3), and the block
(e.g., block 51 in FIG. 3) is set at one time in only one of the

10

15

20

25

30

35

40

45

50

55

60

65

8

sections (e.g., section 55 in FIG. 3) in the virtual area, that is
a collection of the multiple sections, instead of selecting only
one of the sections for setting the block (e.g., block 51 in FIG.
3). Here, even when the block (e.g., block 51 in FIG. 3) is set
in different sections (e.g., section 55 of FIG. 3) of different
areas, an area having performance similar to that in rule (2)
exists. The area is also a virtual area in the storage device 20,
which is illustrated by way of example, and may correspond
to a zone (e.g., zone 57 in FIG. 3).

Rule (4): System performance is advantageously enhanced
by minimizing zone crossings, where the block (e.g., block 51
in FIG. 3) is alternately allocated in multiple zones (e.g., zone
57 in FIG. 3).

Hereinafter, rules (1) to (4) are addressed in more detail
below, with reference to FIGS. 7 and 8. FIG. 7 illustrates a
block allocation method by which read and write perfor-
mance of a flash memory based storage device can be
enhanced.

FIG. 7 illustrates an example of when block allocation is
performed in conformity with rules (1) to (4). As described
above, data is written in the second area II of the storage
device 20 by a sequential access method. Thus, it is noted that
only the second area I1is illustrated in FIG. 7, and for brevity,
the segment (e.g., segment 53 in FIG. 3) is not illustrated in
FIG. 7.

Referring to FIG. 7, first data (1) was allocated to a third
block (BLK 3) of a second section (SECTION 2) in a first
zone (ZONE 1). In addition, second data (2) was allocated to
a fourth block (BLK 4) adjacent to BLK 3 of SECTION 2 in
ZONE 1. Assuming that the address of BLK 3 is X, the
address of BLK 4 is X+1. That is, rule (1) is observed.

Subsequently, third data (3) was allocated to a first block
(BLK 1) of a first section (SECTION 1) in ZONE 1. That is,
while rule (1) was not observed, rule (2) was observed.

Next, fourth data (4) was allocated to a second block (BLK
2)of athird section (SECTION 3)in asecond zone (ZONE 2).
Here, the fourth data (4) was not subjected to continuous
block allocation with respect to the third data (3). However,
the fourth data (4) was allocated to a different zone from that
of the third data (3). Fifth data (5) was allocated to BLK 3 of
SECTION 3 in ZONE 2, and subjected to continuous block
allocation, suggesting that the rule (3) was observed.

FIG. 8 illustrates an example of when block allocation is
not performed in conformity with the rules (1) to (4).

Referring to FIG. 8, the first data (1) was allocated to a third
block (BLK 3) of a first section (SECTION 1) in a first zone
(ZONE 1). The second data (2) was allocated to a first block
(BLK 1) of SECTION 1 in ZONE 1. Thus, the first data (1)
and the second data (2) were not subjected to continuous
block allocation.

Next, the third data (3) was allocated to a second block
(BLK 2) of a third section (SECTION 3) in a second zone
(ZONE 2). In addition, the fourth data (4) was allocated to a
second block (BLK 2) of a second section (SECTION 2) in
ZONE 1. The fifth data (5) was allocated to a third block
(BLK 3) of SECTION 3 in ZONE 2. Here, unnecessary zone
crossing was performed between the third data (3) and the
fourth data (4), and the fifth data (5) was not subjected to
continuous block allocation with respect to the fourth data (4)
even though it was possible to perform the continuous block
allocation. Thus, the rules (1) to (4) were not observed. That
is to say, the read and write performance is poorer than that
shown in FIG. 7.

FIG. 9 is a flowchart for explaining a data read method of
a computing system, according to an exemplary embodiment.
The data read method of the computing system will now be
described with reference to FIG. 9.

US 9,201,787 B2

9

For purpose of illustration, it is assumed that a block that
has most recently been set to store a log LL (the most recently
selected target block) has an address (X). Here, the log L. may
be a set of data for which a host (e.g., host 10 in FIG. 1) issued
a write command to write the set of data in a storage device
(e.g., storage device 20 in FIG. 1). It is further assumed that
the block is included in a Zone Z.

Referring to FIG. 9, continuous block allocation is first
attempted. In particular, it is determined whether or not a
block having an address (X+1) in the zone Z is free (S100).
When the block in the address (X+1) is a free block, the block
in the address (X+1) is set as a next target block (S110).
Continuous block allocation provides the best performance
according to rule (1), stated above. Thus, when the block in
the address (X+1) is free, and the block in the address (X+1)
and the block in the address (X) are positioned in the same
zone Z, the block in the address (X+1) is set as the next target
block.

When the corresponding block is not a free block, a free
section having blocks that are all free is found (S120). Here,
in order to minimize zone crossings, an attempt is made to
find a free section among the sections included in the zone 7.
Therefore, it is first determined whether or not the found free
section is in the zone Z (S130). When the found free section
is in the zone Z, the first block of the found free section is set
as the next target block (S140). The first block may be the first
available free block as determined in view of the correspond-
ing block addresses. This is consistent with rule (4), where the
less frequently zone crossings occur, the better the perfor-
mance becomes. Therefore, when a free section is found
without a zone crossing, the first block of the found free
section may be set as the next target block.

Referring again to FIG. 9, when the found free section is
positioned in a different zone from the zone Z, the zone
including the found free section is set as zone Zn (S150).
Then, it is determined whether or not there are other logs that
have already been written in zone Zn, that is, logs other than
the log L (S160). If not, the first block in the found free section
is set as the next target block (S140). In particular, if no other
logs that have already been written exist in the zone Zn (that
is, if blocks in the zone Zn are all free blocks), a data write
operation is most likely to be based on the continuous block
allocation stated by the rule (1) whenthe log [is written in the
zone Zn, minimizing the possibility of zone crossings, as
described above in the rule (4). Therefore, when no other logs
have been written in the zone Zn, the first block of the found
free section may be set as the next target block.

When other logs have already been written in the zone Zn,
it is determined how many times that step S120 was per-
formed (S170). When the number of times that step S120 has
been performed is greater than a predetermined threshold, the
first block in the found free section is set as the next target
block (S140). However, when the number of times that step
S120 has been performed is less than or equal to a predeter-
mined threshold, a free section having blocks that are all free
is again found (S120).

As described above, when the rules (1) to (4) are observed
in writing the log L. in the storage device 20, the read and write
performance of the computing system 1 is enhanced.

FIGS. 10 to 12 are block diagrams for explaining various
examples of configuring the storage device shown in FIG. 5.
For brevity, the following description will focus on differ-
ences from the previous embodiment shown in FIG. 5.

Referring to FIG. 10, in the storage device of the comput-
ing system according to another embodiment, the second area
II includes segments SO to Sn separated from each other,
where n is a natural number. Both data and nodes may be

5

10

15

20

25

30

35

40

45

50

55

60

65

10

stored in the respective segments SO to Sn. In comparison, in
the computing system according to the embodiment shown in
FIG. 5, the storage device includes data segments DS0 and
DS1 separated from each other and node segments NSO and
NS1. Portions of data are stored in the data segments DSO and
DS1, and nodes may be stored in the node segments NSO and
NSI.

Referring to FIG. 11 in the storage device of the computing
system according to another embodiment, the first area I does
not include a segment summary area (SSA) 66, as shown in
FIG. 5. That is, the first area [includes super blocks 61 and 62,
a checkpoint (CP) area 63, a segment information table (SIT)
64, and a node address table (NAT) 65.

The segment summary information may be stored in the
second area II. In particular, the second area II includes mul-
tiple segments SO to Sn, and each of the segments So to Sn is
divided into multiple blocks. The segment summary informa-
tion may be stored in at least one block SS0 to SSn of each of
the segments SO to Sn.

Referring to FIG. 12, in the storage device of the comput-
ing system according to another embodiment, the first area I
does not include a segment summary area (SSA) 66, as shown
in FIG. 5. That is, the first area I includes super blocks 61 and
62, a checkpoint (CP) area 63, segment information table
(SIT) 64, and a node address table (NAT) 65.

The segment summary information may be stored in the
second area II. The second area II includes multiple segments
53, each of the segments 53 is divided into multiple blocks
BLKO to BLKm, and the blocks BLKO0 to BLKm may include
OOB (Out Of Band) areas OOB1 to OOBm (where, m is a
natural number), respectively. The segment summary infor-
mation may be stored in the OOB areas OOB1 to OOBm.

Hereinafter, a system, to which the computing system
according to embodiments of the inventive concept is applied,
will be described. The system described hereinafter is merely
exemplary, and embodiments of the inventive concept are not
limited thereto.

FIG. 13 is a block diagram for explaining a specific
example of a computing system, according to exemplary
embodiments.

Referring to FIG. 13 a host server 300 is connected to
database (DB) servers 330, 340, 350 and 360 through a net-
work 320. A file system 316 for managing data of the DB
servers 330, 340, 350 and 360 is installed in the host server
300. The file system 316 may be any of the file systems
described above with reference to FIGS. 1 to 12.

FIGS. 14 to 16 are block diagrams illustrating other
examples of a computing system according to embodiments
of the inventive concept.

Referring to FIG. 14, a storage device 1000 (corresponding
to storage device 20 in FIG. 1) includes a nonvolatile memory
device 1100 and a controller 1200. The nonvolatile memory
device 1100 may be configured to store the super blocks 61
and 62, the CP area 63, the SIT 64, and the NAT 65, as
discussed above.

The controller 1200 is connected to a host and the nonvola-
tile memory device 1100. In response to requests from host,
the controller 1200 accesses the nonvolatile memory device
1100. For example, the controller 1200 may be configured to
control read, write, erase and background operations of the
volatile memory device 1100. The controller 1200 is provides
interfacing between the nonvolatile memory device 1100 and
the host. The controller 1200 is also configured to drive firm-
ware for controlling the nonvolatile memory device 1100.

As an example, the controller 1200 may include well-
known elements such as random access memory (RAM), a
processing unit, a host interface and a memory interface. The

US 9,201,787 B2

11

RAM may be used as operation memory of the processing
unit, a cache memory between the nonvolatile memory device
1100 and the host, and/or a buffer memory between the non-
volatile memory device 1100 and the host. The processing
unit may control overall operation of the controller 1200.

The controller 1200 and the nonvolatile memory device
1100 may be integrated in one semiconductor device. For
example, the controller 1200 and the nonvolatile memory
device 1100 may be integrated in one semiconductor device,
and thereby configuring a memory card. The controller 1200
and the nonvolatile memory device 1100, for example, may
be integrated in one semiconductor device, and thereby con-
figuring a PC card (e.g., personal computer memory card
international association (CMCIA)), compact flash (CF)
card, smart media card (SM/SMC), a memory stick, a multi-
media card (e.g., MMC, RS-MMC and MMC micro), an SD
card (e.g., SD, mini SD and micro SD), or a universal flash
storage (UFS).

The controller 1200 and the nonvolatile memory device
1100 may be integrated in one semiconductor device, and
thereby configuring a Solid State Disk/Drive (SSD). When
the storage device 1000 is used as an SSD, the operation speed
of the host connected to the memory system can be signifi-
cantly improved.

As another example, the storage device 1000 may be
formed of a computer, an ultra mobile PC (UMPC), a work-
station, a net-book, a personal digital assistant (PDA), a por-
table computer, a web tablet, a wireless phone, a mobile
phone, a smart phone, an e-book, a portable multimedia
player (PMP), a portable game machine, a navigation system,
a black box, a digital camera, a 3-dimensional television, a
digital audio recorder/player, a digital picture/video recorder/
player, a device capable of transmitting and receiving infor-
mation at a wireless circumstance, one of various electronic
devices constituting home network, one of various electronic
devices constituting computer network, one of various elec-
tronic devices constituting telematics network, RFID, or one
of various electronic devices constituting a computing sys-
tem.

In addition, the nonvolatile memory device 1100 and/or the
storage device 1000 may be packed by various packages, for
example, such as PoP (Package on Package), Ball grid arrays
(BGAs), Chip scale packages (CSPs), Plastic Leaded Chip
Carrier (PLCC), Plastic Dual In-Line Package (PDIP), Die in
Waffle Pack, Die in Wafer Form, Chip On Board (COB),
Ceramic Dual In-Line Package (CERDIP), Plastic Metric
Quad Flat Pack (MQFP), Thin Quad Flatpack (TQFP), Small
Outline (SOIC), Shrink Small Outline Package (SSOP), Thin
Small Outline (TSOP), Thin Quad Flatpack (TQFP), System
In Package (SIP), Multi Chip Package (MCP), Wafer-level
Fabricated Package (WFP), Wafer-Level Processed Stack
Package (WSP), and the like.

Referring to FIG. 15, a system 2000 includes a nonvolatile
memory device 2100 and a controller 2200. The nonvolatile
memory device 2100 includes multiple nonvolatile memory
chips. The nonvolatile memory chips are divided into groups.
The respective groups of the nonvolatile memory chips are
configured to communicate with the controller 2200 through
a common channel. In the illustrated embodiment, the non-
volatile memory chips communicate with the controller 2200
through first to kth channels CH1 to CHk, for example.

In FIG. 15, multiple nonvolatile memory chips are con-
nected to one channel of the first to kth channels CH1 to CHk.
However, it will be understood that the system 2000 may be
modified such that one nonvolatile memory chip is connected
to one channel of the first to kth channels CH1 to CHk.

10

15

20

25

30

35

40

45

50

55

60

65

12

Referring to FIG. 16, a system 3000 includes a central
processing unit (CPU) 3100, random access memory (RAM)
3200, a user interface 3300, a power supply 3400, and the
system 2000 of FIG. 15. The system 2000 is electrically
connected to the CPU 3100, the RAM 3200, the user interface
3300 and the power supply 3400 through a system bus 3500.
The data provided through the user interface 3300 or pro-
cessed by the CPU 3100 is stored in the system 2000.

In FIG. 16, the nonvolatile memory device 2100 is con-
nected to the system bus 3500 through the controller 2200.
Alternatively, the nonvolatile memory device 2100 may be
configured to be directly connected to the system bus 3500.

While the inventive concept has been described with ref-
erenceto illustrative embodiments, it will be apparent to those
of ordinary skill in the art that various changes and modifi-
cations may be made without departing from the spirit and
scope ofthe present inventive concept. Therefore, it should be
understood that the above embodiments are not limiting, but
illustrative.

What is claimed is:

1. A computing system, comprising:

a storage device comprising a storage area comprising flash

memory; and
a file system configured to divide the storage area into a
plurality of zones, a plurality of sections and a plurality
ofblocks, and to write a log in each block of the plurality
of blocks, the file system comprising a block allocation
module,
wherein the block allocation module is configured to allo-
cate a target block, in which a log is to be written, by a
continuous block allocation method according to which
ablock having a continuous address with a most recently
selected block is set as the target block,
wherein the block allocation module is further configured
to find a free section from the plurality of sections when
it is not possible to allocate the target block by the
continuous block allocation method, and to set a block in
the found free section as the target block,
wherein the block in the found free section to be set as the
target block is a block that is first in view of block
addresses among blocks in the found free section, and

wherein the found free section including the block to be set
as the target block is a section that minimizes zone
crossings in writing the log.

2. The computing system of claim 1, wherein each section
of' the plurality of sections is defined to be the same as a unit
of the flash memory performing garbage collection.

3. The computing system of claim 1, wherein a size of each
block is smaller than a size of each section, and the size of
each section is smaller than a size of each zone.

4. The computing system of claim 1, wherein the storage
area includes a first area and a second area, the log being
written in the second area, and

wherein write operations in the first area are performed

using a random access method and write operations in
the second area are performed using a sequential access
method.

5. The computing system of claim 4, wherein a physical
address of the first area is ahead of a physical address of the
second area in the storage device.

6. The computing system of claim 4, wherein a node
address table is stored in the first area, the node address table
including a node identifier (NODE ID) corresponding to a
node block and a physical address corresponding to the node
identifier.

US 9,201,787 B2

13

7. A method of managing data in a computing system, the
method comprising:
dividing a storage area of a storage device into a plurality of
blocks, a plurality of sections and a plurality of zones;

setting a first block of the plurality of blocks in a first
section of the plurality of sections as a first target block
in which first data is to be written, the first section being
in a first zone of the plurality of zones;

determining whether a second block having an address

continuous to the first block is a free block;

when the second block is determined to be a free block,

setting the second block as a second target block in
which second data is to be written after the first data is
written in the first target block;
when the second block is determined not to be a free block,
setting a third block in a second section of the plurality of
sections different from the first section as the second
target block in which the second data is to be written
after the first data is written in the first target block,

wherein blocks in the second section are all free blocks,
and wherein the third block is a block that is a first free
block available in view of addresses among the blocks in
the second section, and

wherein the third block is a block that minimizes zone

crossings in writing the log.

8. The method of claim 7, wherein the second section is in
the first zone.

9. The method of claim 7, wherein the second section is in
a second zone different from the first zone.

10. The method of claim 7, wherein a storage area of the
storage device is implemented by a flash memory.

11. The method of claim 10, wherein the storage area
comprises a first area and a second area, wherein write opera-
tions in the first area are performed using a random access
method and write operations in the second area are performed
using a sequential access method, and the first data and the
second data are written in the second area.

10

20

25

35

14

12. The method of claim 11, wherein a physical address of
the first area is ahead of a physical address of the second area
in the storage device.

13. A computing system, comprising:

a storage device comprising a storage area; and

a host configured to control writing of data in the storage

device, the host comprising a file system configured to
divide the storage area into a plurality of zones, each
zone comprising a plurality of sections, and each section
comprising a plurality of blocks, the file system com-
prising a block allocation module configured to allocate
target blocks in which data are to be written by:

setting as a target block a free block having a continuous

address with a previous target block, in which previous
data is written, in the same section as the previous target
block,
when there is no free block having a continuous address
with the previous target block, setting as the target block
a free block in a different section of the plurality of
sections in the same zone as the previous target block,

when the different section in the same zone as the previous
target block is not available, setting as the target block a
free block in another different section of the plurality of
sections in another zone than the zone of the previous
target block,

wherein the different section is a free section, and the free

block in the different section is a block that is first in
view of block addresses among blocks in the free sec-
tion, and

wherein the free section including the block to be set as the

target block is a section that minimizes zone crossings in
writing the log.

14. The computing system of claim 13, wherein the storage
area comprises a flash memory.

15. The computing system of claim 14, wherein the file
system comprises a flash-friendly file system (F2FS).

#* #* #* #* #*

